Post-radioembolization yttrium-90 PET/CT - part 2: dose-response and tumor predictive dosimetry for resin microspheres

نویسندگان

  • Yung-Hsiang Kao
  • Jeffrey D Steinberg
  • Young-Soon Tay
  • Gabriel KY Lim
  • Jianhua Yan
  • David W Townsend
  • Charley A Budgeon
  • Jan A Boucek
  • Roslyn J Francis
  • Timothy ST Cheo
  • Mark C Burgmans
  • Farah G Irani
  • Richard HG Lo
  • Kiang-Hiong Tay
  • Bien-Soo Tan
  • Pierce KH Chow
  • Somanesan Satchithanantham
  • Andrew EH Tan
  • David CE Ng
  • Anthony SW Goh
چکیده

BACKGROUND Coincidence imaging of low-abundance yttrium-90 (90Y) internal pair production by positron emission tomography with integrated computed tomography (PET/CT) achieves high-resolution imaging of post-radioembolization microsphere biodistribution. Part 2 analyzes tumor and non-target tissue dose-response by 90Y PET quantification and evaluates the accuracy of tumor 99mTc macroaggregated albumin (MAA) single-photon emission computed tomography with integrated CT (SPECT/CT) predictive dosimetry. METHODS Retrospective dose quantification of 90Y resin microspheres was performed on the same 23-patient data set in part 1. Phantom studies were performed to assure quantitative accuracy of our time-of-flight lutetium-yttrium-oxyorthosilicate system. Dose-responses were analyzed using 90Y dose-volume histograms (DVHs) by PET voxel dosimetry or mean absorbed doses by Medical Internal Radiation Dose macrodosimetry, correlated to follow-up imaging or clinical findings. Intended tumor mean doses by predictive dosimetry were compared to doses by 90Y PET. RESULTS Phantom studies demonstrated near-perfect detector linearity and high tumor quantitative accuracy. For hepatocellular carcinomas, complete responses were generally achieved at D70 > 100 Gy (D70, minimum dose to 70% tumor volume), whereas incomplete responses were generally at D70 < 100 Gy; smaller tumors (<80 cm3) achieved D70 > 100 Gy more easily than larger tumors. There was complete response in a cholangiocarcinoma at D70 90 Gy and partial response in an adrenal gastrointestinal stromal tumor metastasis at D70 53 Gy. In two patients, a mean dose of 18 Gy to the stomach was asymptomatic, 49 Gy caused gastritis, 65 Gy caused ulceration, and 53 Gy caused duodenitis. In one patient, a bilateral kidney mean dose of 9 Gy (V20 8%) did not cause clinically relevant nephrotoxicity. Under near-ideal dosimetric conditions, there was excellent correlation between intended tumor mean doses by predictive dosimetry and those by 90Y PET, with a low median relative error of +3.8% (95% confidence interval, -1.2% to +13.2%). CONCLUSIONS Tumor and non-target tissue absorbed dose quantification by 90Y PET is accurate and yields radiobiologically meaningful dose-response information to guide adjuvant or mitigative action. Tumor 99mTc MAA SPECT/CT predictive dosimetry is feasible. 90Y DVHs may guide future techniques in predictive dosimetry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison of Techniques for 90Y PET/CT Image-Based Dosimetry Following Radioembolization with Resin Microspheres

(90)Y PET/CT following radioembolization has recently been established as a viable diagnostic tool, capable of producing images that are both quantitative and have superior image quality than alternative (90)Y imaging modalities. Because radioembolization is assumed to be a permanent implant, it is possible to convert quantitative (90)Y PET image sets into data representative of spatial committ...

متن کامل

Personalized predictive lung dosimetry by technetium-99m macroaggregated albumin SPECT/CT for yttrium-90 radioembolization

BACKGROUND For yttrium-90 ((90)Y) radioembolization, the common practice of assuming a standard 1,000-g lung mass for predictive dosimetry is fundamentally incongruent with the modern philosophy of personalized medicine. We recently developed a technique of personalized predictive lung dosimetry using technetium-99m ((99m)Tc) macroaggregated albumin (MAA) single photon emission computed tomogra...

متن کامل

Determination of Radiation Absorbed Dose to Primary Liver Tumors and Normal Liver Tissue Using Post-Radioembolization 90Y PET

BACKGROUND Radioembolization with Yttrium-90 ((90) Y) microspheres is becoming a more widely used transcatheter treatment for unresectable hepatocellular carcinoma (HCC). Using post-treatment (90) Y positron emission tomography/computerized tomography (PET/CT) scans, the distribution of microspheres within the liver can be determined and quantitatively assessed. We studied the radiation dose of...

متن کامل

Sze Microspheres : Known Proof of Effectiveness Y - Loaded 90 Based Dosimetry for Liver Cancer Treated Using −

1. Lam MGEH, Goris ML, Iagaru AH, Mittra ES, Louie JD, Sze DY. Prognostic utility of 90Y radioembolization dosimetry based on fusion 99mTc-macroaggregated albumin–99mTc-sulfur colloid SPECT. J Nucl Med. 2013;54:2055–2061. 2. Garin E, Lenoir L, Rolland Y, et al. 99mTc-MAA SPECT/CT based dosimetry accurately predicts tumour response and survival in HCC patients treated with 90Y-loaded glass micro...

متن کامل

A Microdosimetric Analysis of Absorbed Dose to Tumor as a Function of Number of Microspheres per Unit Volume in 90Y Radioembolization.

UNLABELLED Differences in maximum tolerable absorbed dose to normal liver between (90)Y radioembolization and external-beam radiation therapy have been explained by citing differences in absorbed-dose heterogeneity at the microscopic level. We investigated microscopic absorbed-dose heterogeneity in radioembolization as a function of the number of microspheres per unit volume in tumor. The goal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013